
BASICS FROM REPRESENTATION THEORY

VINCENT DUMONCEL

Our goal here is to introduce representation theory for finite groups, that is the study
of actions of finite groups on vector spaces.

1. Definitions and examples

Recall first that an action of a group𝐺 on a set 𝑋 is a group homomorphism𝐺 −→ 𝑆(𝑋),
where the latter is the group of bĳective maps (called permutations) of 𝑋 .

Definition 1.1. Let 𝐺 be a finite group, and 𝑉 be a finite-dimensional vector space. A
representation of 𝐺 on 𝑉 is a group homomorphism

𝜑 : 𝐺 −→ GL(𝑉).
The dimension of 𝑉 is then called the degree of 𝜑, and is denoted deg(𝜑).

Given a representation of 𝐺 on 𝑉 , we usually write 𝜑𝑔 for 𝜑(𝑔), and 𝜑𝑔 (𝑣), or 𝜑𝑔𝑣, for
𝜑(𝑔) (𝑣).
Example 1.2. Any group 𝐺 has a degree one trivial representation, defined by 𝜑 : 𝐺 −→
ℂ∗, 𝑔 ↦−→ 1.

Example 1.3. The map ℤ/2ℤ −→ ℂ∗, [𝑘] ↦−→ (−1)𝑘, is a degree one representation of
ℤ/2ℤ.

Example 1.4. More generally, the map ℤ/𝑛ℤ −→ ℂ∗, [𝑘] ↦−→ 𝑒
2𝜋𝑖𝑘
𝑛 , is a degree one

representation of ℤ/𝑛ℤ.

Example 1.5. Define 𝜑 : 𝑆𝑛 −→ GL𝑛(ℂ) = GL(ℂ𝑛) on the standard basis of ℂ𝑛 via
𝜑𝜎 (𝑒𝑖) = 𝑒𝜎(𝑖) , 𝜎 ∈ 𝑆𝑛, 1 ≤ 𝑖 ≤ 𝑛. Given 𝜎 ∈ 𝑆𝑛, the matrix of 𝜑𝜎 in the standard basis
of ℂ𝑛 is obtained by permuting the rows of 𝐼𝑛 according to 𝜎. For instance, if 𝑛 = 3, then

𝜑(13) =

(0 0 1
0 1 0
1 0 0

)
, 𝜑(132) =

(0 1 0
0 0 1
1 0 0

)
.

Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of degree 𝑛. Given a basis 𝐵 of 𝑉 , we can
associate a vector space isomorphism 𝑇 : 𝑉 −→ ℂ𝑛, and define another representation 𝜓
of 𝐺 on ℂ𝑛 by 𝜓𝑔 = 𝑇𝜑𝑔𝑇

−1, 𝑔 ∈ 𝐺. We want to think of this action of 𝐺 on ℂ𝑛 as being
the same as its initial action on 𝑉 . This motivates the next definition.

Definition 1.6. Let 𝜑 : 𝐺 −→ GL(𝑉) and 𝜓 : 𝐺 −→ GL(𝑊) be two representations of
𝐺. We say 𝜑 and 𝜓 are equivalent, and we denote 𝜑 ∼ 𝜓, if there exists a vector spaces
isomorphism 𝑇 : 𝑉 −→ 𝑊 so that 𝑇𝜑𝑔 = 𝜓𝑔𝑇 for all 𝑔 ∈ 𝐺.

It is straightforward to check ∼ is reflexive, symmetric and transitive.
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Example 1.7. Define 𝜑 : ℤ/𝑛ℤ −→ GL2(ℂ) and 𝜓 : ℤ/𝑛ℤ −→ GL2(ℂ) by

𝜑[𝑘] =

(
cos(2𝜋 𝑘

𝑛
) − sin(2𝜋 𝑘

𝑛
)

sin(2𝜋 𝑘
𝑛
) cos(2𝜋 𝑘

𝑛
)

)
, 𝜓[𝑘] =

(
𝑒

2𝜋𝑖𝑘
𝑛 0

0 𝑒−
2𝜋𝑖𝑘
𝑛

)
.

Then 𝜑 ∼ 𝜓, and a direct computation shows that 𝜑[𝑘] = 𝐴𝜓[𝑘]𝐴
−1 for any 0 ≤ 𝑘 ≤ 𝑛− 1,

where 𝐴 =

(
𝑖 −𝑖
1 1

)
.

Note that in Example 1.5 we have
𝜑𝜎 (𝑒1 + · · · + 𝑒𝑛) = 𝑒𝜎(1) + · · · + 𝑒𝜎(𝑛) = 𝑒1 + · · · + 𝑒𝑛

for any 𝜎 ∈ 𝑆𝑛. This means that the subspace ℂ(𝑒1 + · · · + 𝑒𝑛) is invariant (in fact even
fixed) under the action of 𝜑𝜎, and restricting our attention to this subspace provides a
new action (here trivial) of the group on a vector space.
Definition 1.8. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation. A subspace 𝑊 ⊂ 𝑉 is called
𝐺−invariant if 𝜑𝑔𝑤 ∈ 𝑊 for any 𝑔 ∈ 𝐺 and any 𝑤 ∈ 𝑊 .

For 𝜓 as in Example 1.7, ℂ𝑒1 and ℂ𝑒2 are both ℤ/𝑛ℤ−invariant and ℂ = ℂ𝑒1 ⊕ ℂ𝑒2.
This is not a special feature of this representation, and we will prove later that such a
decomposition always exists.

Definition 1.9. Let 𝜑(1) : 𝐺 −→ GL(𝑉1), 𝜑(2) : 𝐺 −→ GL(𝑉2) be two representations of 𝐺.
Their direct sum is the representation 𝜑(1) ⊕ 𝜑(2) : 𝐺 −→ GL(𝑉1 ⊕ 𝑉2) defined as

(𝜑(1) ⊕ 𝜑(2))𝑔 (𝑣1, 𝑣2) ··= (𝜑(1)
𝑔 𝑣1,𝜑

(2)
𝑔 𝑣2)

for any 𝑔 ∈ 𝐺 and (𝑣1, 𝑣2) ∈ 𝑉1 ⊕ 𝑉2.

In terms of matrices, if 𝜑(1) : 𝐺 −→ GL𝑛(ℂ) and 𝜑(2) : 𝐺 −→ GL𝑚(ℂ), then 𝜑(1) ⊕
𝜑(2) : 𝐺 −→ GL𝑛+𝑚(ℂ) and

(𝜑(1) ⊕ 𝜑(2))𝑔 =
(
𝜑
(1)
𝑔 0
0 𝜑

(2)
𝑔

)
, 𝑔 ∈ 𝐺.

Example 1.10. The representation 𝜓 of Example 1.7 is the direct sum 𝜑(1) ⊕ 𝜑(2) , where
𝜑
(1)
[𝑘] = 𝑒

2𝜋𝑖𝑘
𝑛 and 𝜑

(2)
[𝑘] = 𝑒−

2𝜋𝑖𝑘
𝑛 , 0 ≤ 𝑘 ≤ 𝑛 − 1.

Example 1.11. If 𝑛 > 1 and 𝜑 is the representation of 𝐺 given by 𝜑𝑔 = 𝐼𝑛 for any 𝑔 ∈ 𝐺,
𝜑 is not the trivial representation of 𝐺 but rather the direct sum of 𝑛 copies of the trivial
representation.
Example 1.12. Let 𝜑 : 𝑆3 −→ GL2(ℂ) be defined on the generators (12) and (123) of 𝑆3
as

𝜑(12) =

(
−1 −1
0 1

)
, 𝜑(123) =

(
−1 −1
1 0

)
and let 𝜓 be the trivial representation of 𝑆3. Then

(𝜑 ⊕ 𝜓)(12) =

(−1 −1 0
0 1 0
0 0 1

)
, (𝜑 ⊕ 𝜓)(123) =

(−1 −1 0
1 0 0
0 0 1

)
.
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In fact we will see later that this representation is equivalent to the one of Example 1.5.
If 𝜑 : 𝐺 −→ GL(𝑉) is a representation and 𝑊 ⊂ 𝑉 is 𝐺−invariant, one may restrict 𝜑

to 𝑊 to get a well-defined representation 𝜑 |𝑊 : 𝐺 −→ GL(𝑊). We then say that 𝜑|𝑊 is a
subrepresentation of 𝜑. If 𝑉1, 𝑉2 ⊂ 𝑉 are 𝐺−invariant and 𝑉 = 𝑉1 ⊕𝑉2, then 𝜑 is equivalent
to the direct sum 𝜑|𝑉1 ⊕ 𝜑 |𝑉2 .

In mathematics, it is often the case that one has a sort of factorization into primes or
irreducibles. This also happens in representation theory.
Definition 1.13. A representation𝜑 : 𝐺 −→ GL(𝑉) is called irreducible if the only𝐺−invariant
subspaces of 𝑉 are {0} and 𝑉 .
Example 1.14. Any one dimensional representation 𝜑 : 𝐺 −→ ℂ∗ is irreducible, as the
only subspaces of ℂ are {0} and ℂ itself.
Example 1.15. As already mentioned, the representation 𝜓 of Example 1.7 has two non-
trivial invariant subspaces, and is therefore not irreducible. Likewise, using the matrix 𝐴
of the same example, one can deduce that

ℂ

(
𝑖
1

)
, ℂ

(
−𝑖
1

)
are non-trivial invariant subspaces for 𝜑, which is also not irreducible.

We will establish below that being irreducible is an invariant of equivalences of repre-
sentations. Non-irreducibility of 𝜓 therefore directly implies non-irreducibility of 𝜑.

In fact, we also could deduce thatℂ
(
𝑖
1

)
is invariant for𝜑 by noticing the latter is actually

an eigenspace for each 𝜑[𝑘] . Let us work out this idea on another example before stating
a general result.
Example 1.16. Consider the representation of 𝐺 = 𝑆3 given by

𝜑(12) =

(
−1 −1
0 1

)
, 𝜑(123) =

(
−1 −1
1 0

)
We claim this representation is irreducible.

Proof. Indeed, suppose towards a contradiction that 𝑊 ⊂ ℂ2 is a non-trivial 𝑆3−invariant
subspace. Then dim(𝑊) = 1. Fix 𝑣 ∈ 𝑊 , 𝑣 ≠ 0, so that𝑊 = ℂ𝑣. As𝜑(12)𝑣,𝜑(123)𝑣 ∈ 𝑊 , we
have 𝜑(12)𝑣 = 𝜆𝑣, 𝜑(123)𝑣 = 𝜇𝑣 for some𝜆, 𝜇 ∈ ℂ. This implies 𝑣 is a common eigenvector
for 𝜑(12) and 𝜑(123) . On the other hand, a direct computation shows that the eigenvalues
of 𝜑(12) are 1 and −1, with corresponding eigenspaces

𝐸1 = ℂ

(
−1
2

)
, 𝐸−1 = ℂ

(
1
0

)
and neither

(
−1
2

)
nor

(
1
0

)
is an eigenvector for 𝜑(123) . This is a contradiction, and thus 𝜑

is irreducible. □

Our first proposition is then a criterion for irreducibility.
Proposition 1.17. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of 𝐺 of degree 2 or 3. Then 𝜑 is
irreducible if and only if there is no common eigenvector to all 𝜑𝑔, 𝑔 ∈ 𝐺.
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2. Maschke’s theorem and complete reducibility

Our goal is to show that any representation is equivalent to a direct sum of irreducible
representations. To that aim, we adopt some terminologies.

Definition 2.1. Let𝐺 be a group. A representation𝜑 : 𝐺 −→ GL(𝑉) is said to be completely
reducible if 𝑉 = 𝑉1 ⊕ · · · ⊕ 𝑉𝑛, where 𝑉1, . . . , 𝑉𝑛 are 𝐺−invariant subspaces of 𝑉 and 𝜑|𝑉𝑖

is irreducible for all 1 ≤ 𝑖 ≤ 𝑛.

Equivalently, 𝜑 is completely reducible if 𝜑 ∼ 𝜑(1) ⊕ · · · ⊕𝜑(𝑛) , where 𝜑(𝑖) is irreducible
for all 1 ≤ 𝑖 ≤ 𝑛.

Definition 2.2. A representation 𝜑 : 𝐺 −→ GL(𝑉) is called decomposable if there exists
non-trivial 𝐺−invariant subspaces 𝑉1, 𝑉2 so that 𝑉 = 𝑉1 ⊕ 𝑉2. Otherwise, 𝜑 is called
indecomposable.

First, we show that these notions are invariant under equivalences of representations.

Proposition 2.3. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation equivalent to a decomposable repre-
sentation 𝜓 : 𝐺 −→ GL(𝑊). Then 𝜑 is decomposable.

Proof. As 𝜑 ∼ 𝜓, let 𝑇 : 𝑉 −→ 𝑊 be an isomorphism of vector spaces so that 𝜓𝑔𝑇 = 𝑇𝜑𝑔

for all 𝑔 ∈ 𝐺. By assumption, we may find 𝑊1,𝑊2 ⊂ 𝑊 two non-trivial 𝐺−invariant
subspaces so that 𝑊 = 𝑊1 ⊕𝑊2. Let then 𝑉1 ··= 𝑇−1(𝑊1), 𝑉2 ··= 𝑇−1(𝑊2).

First, observe that 𝑉1 ∩ 𝑉2 = 𝑇−1(𝑊1 ∩𝑊2) = 𝑇−1({0}) = {0} as 𝑇 is an isomorphism.
Also if 𝑣 ∈ 𝑉 , then 𝑇𝑣 ∈ 𝑊 , so there exists a unique pair 𝑤1 ∈ 𝑊1, 𝑤2 ∈ 𝑊2 so that
𝑇𝑤 = 𝑤1 + 𝑤2. Now 𝑣 = 𝑇−1𝑤1 + 𝑇−1𝑤2 = 𝑣1 + 𝑣2 with 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2, and the pair we
just found is unique since 𝑇 is an isomorphism. This proves that 𝑉 = 𝑉1 ⊕ 𝑉2.

It remains to prove that 𝑉1, 𝑉2 are 𝐺−invariant. For instance, let 𝑣 ∈ 𝑉1 and 𝑔 ∈ 𝐺.
Then

𝜑𝑔𝑣 = 𝑇−1𝜓𝑔𝑇𝑣

and𝑇𝑣 ∈ 𝑊1 which is 𝐺−invariant, so𝜓𝑔𝑇𝑣 ∈ 𝑊1, whence 𝜑𝑔𝑣 = 𝑇−1𝜓𝑔𝑇𝑣 ∈ 𝑇−1(𝑊1) =
𝑉1. Thus 𝑉1 is 𝐺−invariant, and the same reasoning shows 𝑉2 is 𝐺−invariant as well. □

A similar proof shows analoguous statements for irreducibility and complete reducibil-
ity.

Proposition 2.4. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation equivalent to a completely reducible
(resp. irreducible) representation 𝜓 : 𝐺 −→ GL(𝑊). Then 𝜑 is completely reducible (resp.
irreducible).

The strategy for proving a decomposition into a direct sum of irreducible representa-
tions is to prove that each representation is either irreducible or decomposable, and then
proceed by induction on the degree. This last fact could seem obvious, but may fail for
representations of infinite groups. Here is an example.

Example 2.5. Let 𝜑 : ℤ −→ GL2(ℂ) be given by

𝜑(𝑛) =
(
1 𝑛
0 1

)
.

It is easy to check 𝜑 is a homomorphism, and that 𝑒1 is an eigenvector for all 𝜑(𝑛), 𝑛 ∈ ℤ.
Thus 𝜑 is not irreducible. On the other hand, if 𝜑 is decomposable, it is equivalent to
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a direct sum of two one-dimensional representations. Such a representation is diagonal,
and thus 𝜑(1) is diagonalisable, a contradiction. Hence 𝜑 is indecomposable.

To prove every representation of a finite group is either irreducible or decomposable,
we will proceed in two steps, first showing this holds for unitary representations, and then
showing every representation is equivalent to a unitary one.
Definition 2.6. Let 𝑉 be an inner product space. A representation 𝜑 : 𝐺 −→ GL(𝑉) is
unitary if

⟨𝜑𝑔𝑢,𝜑𝑔𝑣⟩ = ⟨𝑢, 𝑣⟩
for any 𝑔 ∈ 𝐺 and 𝑢, 𝑣 ∈ 𝑉 .

In other words, a representation 𝜑 is unitary if its image lies into 𝑈 (𝑉), the unitary
group of 𝑉 .

Example 2.7. Let𝜑 : ℝ −→ 𝕋 , 𝑡 ↦−→ 𝑒2𝜋𝑖𝑡. Then𝜑(𝑡+𝑠) = 𝑒2𝜋𝑖(𝑡+𝑠) = 𝑒2𝜋𝑖𝑡𝑒2𝜋𝑖𝑠 = 𝜑(𝑡)𝜑(𝑠)
for all 𝑠, 𝑡 ∈ ℝ, so 𝜑 is a homomorphism, and as 𝕋 = 𝑈 (ℂ), it is a one-dimensional unitary
representation of ℝ.

We can now proceed to show the dichotomy announced above for unitary representa-
tions.
Proposition 2.8. Let 𝜑 : 𝐺 −→ GL(𝑉) be a unitary representation of a finite group 𝐺. Then 𝜑
is either irreducible or decomposable.
Proof. If 𝜑 is irreducible, there is nothing to prove. Suppose then it is not, and let 𝑊 ⊂ 𝑉

be a non-trivial 𝐺−invariant subspace. Then its orthogonal 𝑊⊥ is also a proper subspace
of 𝑉 and 𝑉 = 𝑊 ⊕𝑊⊥. It remains to prove it is also 𝐺−invariant. Let 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑊⊥.
Then for 𝑤 ∈ 𝑊 one has

⟨𝜑𝑔𝑣, 𝑤⟩ = ⟨𝜑𝑔−1𝜑𝑔𝑣,𝜑𝑔−1𝑤⟩ = ⟨𝑣,𝜑𝑔−1𝑤⟩
since 𝜑𝑔 is unitary. As 𝑊 is 𝐺−invariant, 𝜑𝑔−1𝑤 ∈ 𝑊 and since 𝑣 ∈ 𝑊⊥, we deduce
⟨𝑣,𝜑𝑔−1𝑤⟩ = 0. Hence 𝜑𝑔𝑣 ∈ 𝑊⊥, and the latter is therefore 𝐺−invariant. This proves
that 𝜑 is decomposable. □

The second step is then to prove any representation is equivalent to a unitary represen-
tation.
Proposition 2.9. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of a finite group 𝐺. Then 𝜑 is
equivalent to a unitary representation.
Proof. Let 𝑛 ··= dim(𝑉) and fix an isomorphism of vector spaces 𝑇 : 𝑉 −→ ℂ𝑛. Setting
𝜌𝑔 = 𝑇𝜑𝑔𝑇

−1 for any 𝑔 ∈ 𝐺 yields a representation 𝜌 : 𝐺 −→ GL𝑛(ℂ) equivalent to 𝜑.
As ∼ is an equivalence relation, it is then enough to prove that 𝜌 is equivalent to a unitary
representation. To this aim, we show that there is an inner product on ℂ𝑛 for which 𝜌 is
unitary. Let ⟨·, ·⟩ be the standard inner product on ℂ𝑛, and define

(𝑢, 𝑣) ··=
∑︁
𝑔∈𝐺

⟨𝜌𝑔𝑢, 𝜌𝑔𝑣⟩, 𝑢, 𝑣 ∈ ℂ𝑛.

It is straightforward to check (·, ·) is an inner product. For instance if 𝑢 ∈ ℂ𝑛 one has

(𝑢, 𝑢) =
∑︁
𝑔∈𝐺

⟨𝜌𝑔𝑢, 𝜌𝑔𝑢⟩
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and ⟨𝜌𝑔𝑢, 𝜌𝑔𝑢⟩ ≥ 0 for all 𝑔 ∈ 𝐺, whence (𝑢, 𝑢) ≥ 0. Also if (𝑢, 𝑢) = 0 then ⟨𝜌𝑔𝑢, 𝜌𝑔𝑢⟩ =
0 for all 𝑔 ∈ 𝐺. In particular, for 𝑔 = 𝑒, we get ⟨𝑢, 𝑢⟩ = 0, whence 𝑢 = 0. Additionally, 𝜌
is unitary for this new inner product, as

(𝜌ℎ𝑢, 𝜌ℎ𝑣) =
∑︁
𝑔∈𝐺

⟨𝜌𝑔𝜌ℎ𝑢, 𝜌𝑔𝜌ℎ𝑣⟩ =
∑︁
𝑔∈𝐺

⟨𝜌𝑔ℎ𝑢, 𝜌𝑔ℎ𝑣⟩ =
∑︁
𝑡∈𝐺

⟨𝜌𝑡𝑢, 𝜌𝑡𝑣⟩ = (𝑢, 𝑣)

since 𝑔 ↦−→ 𝑔ℎ is a permutation of 𝐺. To conclude, choose {𝑓1, . . . , 𝑓𝑛} an orthonormal
basis of (ℂ𝑛, (·, ·)), define an isomorphism 𝑆 : (ℂ𝑛, ⟨·, ·⟩) −→ (ℂ𝑛, (·, ·)) by 𝑆𝑒𝑖 = 𝑓𝑖, for
1 ≤ 𝑖 ≤ 𝑛, and extend it by linearity. Set 𝑇 ··= Idℂ𝑛 ◦ 𝑆, where Idℂ𝑛 : (ℂ𝑛, (·, ·)) −→
(ℂ𝑛, ⟨·, ·⟩). The invariance of (·, ·) with respect to 𝜌 now implies that 𝑇𝜌𝑔𝑇

−1 is unitary
for ⟨·, ·⟩, for any 𝑔 ∈ 𝐺. This concludes the proof. □

As explained earlier, Propositions 2.3, 2.4, 2.8, 2.9 together provide the following corol-
lary.

Corollary 2.10. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of a finite group 𝐺. Then 𝜑 is either
irreducible or decomposable.

Remark 2.11. Clearly, irreducible representations are indecomposable. Example 2.5 shows
the converse may fail.

Now we know every representation is either irreducible or decomposable, we proceed
to establish Maschke’s theorem, the central result of this part.

Theorem 2.12. Any representation of a finite group is completely reducible.

Proof. Let𝜑 : 𝐺 −→ GL(𝑉) be a representation of a finite group𝐺. We prove the statement
by induction on 𝑛, the degree of the representation. If 𝑛 = 1, 𝜑 is irreducible by Example
1.14. Suppose then 𝑛 > 1, and that the statement holds for any representation of a
finite group of degree at most 𝑛 − 1. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of degree
𝑛. If 𝜑 is irreducible, we are done. If not, it is decomposable by Corollary 2.10, and
we find 𝑉1, 𝑉2 ⊂ 𝑉 non-trivial 𝐺−invariant subspaces of 𝑉 so that 𝑉 = 𝑉1 ⊕ 𝑉2. As
dim(𝑉1), dim(𝑉2) < 𝑛, the induction hypothesis implies that 𝜑 |𝑉1 and 𝜑 |𝑉2 are completely
reducible, that is there exist 𝑈1, . . . ,𝑈𝑠,𝑊1, . . . ,𝑊𝑟 which are 𝐺−invariant so that

𝑉1 = 𝑈1 ⊕ · · · ⊕𝑈𝑠, 𝑉2 = 𝑊1 ⊕ · · · ⊕𝑊𝑟

and 𝜑|𝑈𝑖
,𝜑|𝑊 𝑗

are irreducible, for any 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑟. Then
𝑉 = 𝑉1 ⊕ 𝑉2 = 𝑈1 ⊕ · · · ⊕𝑈𝑠 ⊕𝑊1 ⊕ · · · ⊕𝑊𝑟

and 𝜑 is completely reducible. This achieves the inductive step and the proof. □

Naturally, the question that arises with this result is about the (non-)uniqueness of the
decomposition of a representation into irreducible ones. This will be solved in a next
section.

3. Schur’s lemma and orthogonality relations

We now turn to study the "morphisms" of the theory.

Definition 3.1. Let 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be representations of a group 𝐺.
A morphism from 𝜑 to 𝜌 is a linear map 𝑇 : 𝑉 −→ 𝑊 so that 𝑇𝜑𝑔 = 𝜌𝑔𝑇 for any 𝑔 ∈ 𝐺.
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This notion is a weakening of equivalences of representations, since we do not require
𝑇 to be invertible.

For two representations 𝜑, 𝜌, we denote Hom𝐺 (𝜑, 𝜌) the set of morphisms from 𝜑 to
𝜌. Obviously, Hom𝐺 (𝜑, 𝜌) ⊂ Hom(𝑉,𝑊). An element 𝑇 ∈ Hom𝐺 (𝜑, 𝜌) is often called
an intertwiner, or intertwining operator, of 𝜑 and 𝜌.

An immediate consequence of the previous definition is the linear structure of Hom𝐺 (𝜑, 𝜌).
Proposition 3.2. Let 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be representations of a group 𝐺.
Then Hom𝐺 (𝜑, 𝜌) is a subspace of Hom(𝑉,𝑊).
Proof. Clearly, 0 ∈ Hom𝐺 (𝜑, 𝜌), and if 𝑇1, 𝑇2 ∈ Hom𝐺 (𝜑, 𝜌) and 𝑐 ∈ ℂ, then

(𝑇1 + 𝑐𝑇2)𝜑𝑔 = 𝑇1𝜑𝑔 + 𝑐𝑇2𝜑𝑔 = 𝜌𝑔𝑇1 + 𝑐𝜌𝑔𝑇2 = 𝜌𝑔 (𝑇1 + 𝑐𝑇2)
for any 𝑔 ∈ 𝐺, so that 𝑇1 + 𝑐𝑇2 ∈ Hom𝐺 (𝜑, 𝜌) as well. □

The next proposition is also a direct consequence of the definition.
Proposition 3.3. If 𝑇 : 𝑉 −→ 𝑊 is in Hom𝐺 (𝜑, 𝜌), then Ker(𝑇) and Im(𝑇) are 𝐺−invariant.
Proof. First, suppose 𝑣 ∈ Ker(𝑇). Then, since 𝑇𝜑𝑔 = 𝜌𝑔𝑇 for any 𝑔 ∈ 𝐺, it follows that

𝑇𝜑𝑔𝑣 = 𝜌𝑔𝑇𝑣 = 𝜌𝑔 (0) = 0
for any 𝑔 ∈ 𝐺, thus 𝜑𝑔𝑣 ∈ Ker(𝑇), which is 𝐺−invariant.

Now, if 𝑤 ∈ Im(𝑇), say 𝑤 = 𝑇𝑣, then
𝜌𝑔𝑤 = 𝜌𝑔𝑇𝑣 = 𝑇𝜑𝑔𝑣 ∈ Im(𝑇)

for any 𝑔 ∈ 𝐺, whence Im(𝑇) is 𝐺−invariant. □

The next result, usually referred to as the Schur’s lemma, is fundamental to representation
theory. Roughly speaking, it says that morphisms between irreducible representations
are very limited.
Lemma 3.4. Let 𝜑, 𝜌 be irreducible representations of a group 𝐺, and let𝑇 ∈ Hom𝐺 (𝜑, 𝜌). Then
either 𝑇 = 0 or 𝑇 is an isomorphism. Consequently:

(i) If 𝜑 ≁ 𝜌, then Hom𝐺 (𝜑, 𝜌) = {0}.
(ii) If 𝜑 = 𝜌, there exists 𝜆 ∈ ℂ so that 𝑇 = 𝜆Id𝑉 .

Proof. Let then 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be irreducible representations of 𝐺,
with 𝑇 ∈ Hom𝐺 (𝜑, 𝜌). If 𝑇 = 0, we are done.

Assume now 𝑇 ≠ 0. From Proposition 3.3, Ker(𝑇) is a 𝐺−invariant subspace of 𝑉 ,
whence Ker(𝑇) = {0} or Ker(𝑇) = 𝑉 by irreducibility of 𝜑. As𝑇 ≠ 0 this case is excluded,
so Ker(𝑇) = {0} and 𝑇 is injective. As also Im(𝑇) is 𝐺−invariant and 𝑇 ≠ 0, it follows
that Im(𝑇) = 𝑊 , and 𝑇 is surjective. In conclusion, 𝑇 is an isomorphism.

For (i), suppose Hom𝐺 (𝜑, 𝜌) ≠ {0}, and pick 𝑇 ≠ 0 a morphism between 𝜑 and 𝜌. As
we just proved, 𝑇 is an isomorphism, whence 𝜑 ∼ 𝜌.

For (ii), suppose that 𝑇 : 𝑉 −→ 𝑉 ∈ Hom𝐺 (𝜑,𝜑) , and let 𝜆 ∈ ℂ be an eigenvalue of
𝑇 . Then 𝑇 − 𝜆Id𝑉 is not invertible, and from Proposition 3.2 one has also 𝑇 − 𝜆Id𝑉 ∈
Hom𝐺 (𝜑,𝜑). From the first part of the proof, we deduce 𝑇 −𝜆Id𝑉 = 0, i.e. 𝑇 = 𝜆Id𝑉 . □

We are now able to describe irreducible representations of abelian groups.
Corollary 3.5. Let 𝐺 be an abelian group. Then any irreducible representation of 𝐺 has degree
one.
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Proof. Let 𝜑 : 𝐺 −→ GL(𝑉) be an irreducible representation of 𝐺. Fix ℎ ∈ 𝐺. Then
𝜑ℎ𝜑𝑔 = 𝜑ℎ𝑔 = 𝜑𝑔ℎ = 𝜑𝑔𝜑ℎ

for any 𝑔 ∈ 𝐺, and Schur’s lemma then implies there is 𝜆ℎ ∈ ℂ so that 𝜑ℎ = 𝜆ℎId𝑉 . If
𝑣 ≠ 0 ∈ 𝑉 and 𝜆 ∈ ℂ, then

𝜑ℎ𝜆𝑣 = 𝜆ℎ𝜆𝑣 ∈ ℂ𝑣

so is a 𝐺−invariant subspace of 𝑉 . From the irreducibility of 𝜑, it follows that 𝑉 = ℂ𝑣,
and therefore dim(𝑉) = 1, as announced. □

This result has nice applications in linear algebra.

Corollary 3.6. Let 𝜑 : 𝐺 −→ GL𝑛(ℂ) be a representation of a finite abelian group 𝐺. Then there
exists an invertible matrix 𝑇 ∈ GL𝑛(ℂ) so that 𝑇−1𝜑𝑔𝑇 is diagonal for all 𝑔 ∈ 𝐺.

Proof. By Theorem 2.12, 𝜑 is completely reducible, so 𝜑 ∼ 𝜑(1) ⊕ · · · ⊕ 𝜑(𝑚) where 𝜑(𝑖) is
an irreducible representation of 𝐺, 1 ≤ 𝑖 ≤ 𝑚. Since 𝐺 is abelian, 𝜑(𝑖) is one-dimensional,
so 𝑛 = 𝑚 and 𝜑

(𝑖)
𝑔 ∈ ℂ∗ for any 𝑔 ∈ 𝐺 and 1 ≤ 𝑖 ≤ 𝑛. Denoting 𝑇 : ℂ𝑛 −→ ℂ𝑛 the

isomorphism realising the equivalence between 𝜑 and 𝜑(1) ⊕ · · · ⊕ 𝜑(𝑚) , it follows that
𝑇−1𝜑𝑔𝑇 is the diagonal 𝑛 × 𝑛 matrix whose 𝑖−th coefficient on the diagonal is 𝜑

(𝑖)
𝑔 , for

any 𝑔 ∈ 𝐺 and 1 ≤ 𝑖 ≤ 𝑛. □

We deduce from this result the diagonalisability of any matrix with finite order.

Corollary 3.7. Let 𝐴 ∈ GL𝑚(ℂ) having finite order. Then 𝐴 is diagonalisable, and its eigenvalues
are 𝑛−th roots of unity, where 𝐴𝑛 = 𝐼𝑚.

Proof. Suppose then that 𝐴𝑛 = 𝐼𝑚. Define a representation of ℤ/𝑛ℤ on ℂ𝑚 by

𝜑 : ℤ/𝑛ℤ, [𝑘] ↦−→ 𝐴𝑘.

It is easy to check that 𝜑 is a representation. As ℤ/𝑛ℤ is abelian, Corollary 3.6 implies
there is 𝑇 ∈ GL𝑚(ℂ) so that 𝑇−1𝜑[1]𝑇 = 𝑇−1𝐴𝑇 is diagonal, whence 𝐴 is diagonalisable.

Now 𝑇−1𝐴𝑇 = 𝐷 is the matrix of the eigenvalues of 𝜆1, . . . ,𝜆𝑚 of 𝐴, and as

𝐷𝑛 = (𝑇−1𝐴𝑇)𝑛 = 𝑇−1𝐴𝑛𝑇 = 𝑇−1𝐼𝑚𝑇 = 𝐼𝑚

it follows that 𝜆𝑛
𝑖
= 1 for any 1 ≤ 𝑖 ≤ 𝑚. Thus 𝜆1, . . . ,𝜆𝑚 are 𝑛−th roots of unity, as

claimed. □

From now on,𝐺 always denote a finite group. Let𝜑 : 𝐺 −→ GL𝑛(ℂ) be a representation
of 𝐺. Then 𝜑(𝑔) = (𝜑𝑖 𝑗 (𝑔))1≤𝑖, 𝑗≤𝑛 where 𝜑𝑖 𝑗 (𝑔) ∈ ℂ, and thus 𝜑𝑖 𝑗 ∈ ℂ𝐺 = {𝑓 : 𝐺 −→ ℂ}.
Definition 3.8. Let 𝐺 be a group. We denote 𝐿(𝐺) ··= ℂ𝐺 the ℂ−vector space of complex
valued functions defined on 𝐺, endowed with the inner product

⟨𝑓1, 𝑓2⟩ ··=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑓1(𝑔) 𝑓2(𝑔), 𝑓1, 𝑓2 ∈ ℂ𝐺.

We are now going to show that when 𝜑 is irreducible and unitary, the set {𝜑𝑖 𝑗 : 1 ≤
𝑖, 𝑗 ≤ 𝑛} forms an orthogonal set in 𝐿(𝐺).
Theorem 3.9. Let 𝜑 : 𝐺 −→ 𝑈𝑛(ℂ), 𝜌 : 𝐺 −→ 𝑈𝑚(ℂ) be inequivalent irreducible unitary
representations of 𝐺. Then
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(i) ⟨𝜑𝑖 𝑗, 𝜌𝑘𝑙⟩ = 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 1 ≤ 𝑘, 𝑙 ≤ 𝑚.
(ii) ⟨𝜑𝑖𝑘,𝜑 𝑗𝑙⟩ = 1

𝑛
𝛿𝑖 𝑗𝛿𝑘𝑙.

The proof of these orthogonality relations requires some preparations. The first one
provides a generic way of getting intertwiners of representations.

Let𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be representations of𝐺, and let𝑇 ∈ Hom(𝑉,𝑊).
Define a new linear transformation 𝑇 ∈ Hom(𝑉,𝑊) by

𝑇 ··=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇𝜑𝑔.

This procedure has the following properties.

Lemma 3.10. Let 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be representations of 𝐺, and let
𝑇 ∈ Hom(𝑉,𝑊). Then

(i) 𝑇 ∈ Hom𝐺 (𝜑, 𝜌).
(ii) If 𝑇 ∈ Hom𝐺 (𝜑, 𝜌), then 𝑇 = 𝑇 .
(iii) The map Hom(𝑉,𝑊) −→ Hom𝐺 (𝜑, 𝜌), 𝑇 ↦−→ 𝑇 is linear and surjective.

Proof. (i) Obvisously, 𝑇 ∈ Hom(𝑉,𝑊) and if 𝑔 ∈ 𝐺 we compute that

𝑇𝜑ℎ =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇𝜑𝑔𝜑ℎ

=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇𝜑𝑔ℎ =
1
|𝐺 |

∑︁
𝑡∈𝐺

𝜌ℎ𝑡−1𝑇𝜑𝑡

= 𝜌ℎ

1
|𝐺 |

∑︁
𝑡∈𝐺

𝜌𝑡−1𝑇𝜑𝑡

= 𝜌ℎ𝑇

whence 𝑇 ∈ Hom𝐺 (𝜑, 𝜌).
(ii) If 𝑇 already intertwines 𝜑 and 𝜌, then 𝑇𝜑𝑔 = 𝜌𝑔𝑇 for any 𝑔 ∈ 𝐺, and it follows that

𝑇 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇𝜑𝑔 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝜌𝑔𝑇 = 𝑇

as claimed.
(iii) The surjectivity follows from (ii), and if 𝑇1, 𝑇2 ∈ Hom(𝑉,𝑊) and 𝑐 ∈ ℂ, then

𝑇1 + 𝑐𝑇2 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1 (𝑇1 + 𝑐𝑇2)𝜑𝑔

=
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇1𝜑𝑔 + 𝑐
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑔−1𝑇2𝜑𝑔

= 𝑇1 + 𝑐𝑇2

establishing linearity of 𝑇 ↦−→ 𝑇 . □



BASICS FROM REPRESENTATION THEORY 9

Then, from Schur’s lemma, we can in fact deduce an explicit expression for this inter-
twiner.

Proposition 3.11. Let 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be irreducible representations of
𝐺, and let 𝑇 ∈ Hom(𝑉,𝑊). Then

(i) If 𝜑 ≁ 𝜌, then 𝑇 = 0.
(ii) If 𝜑 = 𝜌, then 𝑇 =

Tr(𝑇)
deg(𝜑) Id𝑉 .

Proof. Point (i) follows from (i) of Lemma 3.4. For (ii), we use (ii) of Lemma 3.4 to deduce
there is𝜆 ∈ ℂ so that𝑇 = 𝜆Id𝑉 . To determine𝜆, we compute Tr(𝑇) in two different ways.
On the one hand we have

Tr(𝑇) = Tr(𝜆Id𝑉 ) = 𝜆Tr(Id𝑉 ) = 𝜆dim(𝑉) = 𝜆deg(𝜑)
while on the other hand the initial definition of 𝑇 provides

Tr(𝑇) = Tr
(

1
|𝐺 |

∑︁
𝑔∈𝐺

𝜑𝑔−1𝑇𝜑𝑔

)
=

1
|𝐺 |

∑︁
𝑔∈𝐺

Tr(𝜑𝑔−1𝑇𝜑𝑔) =
1
|𝐺 |

∑︁
𝑔∈𝐺

Tr(𝑇) = Tr(𝑇).

Thus 𝜆 =
Tr(𝑇)

deg(𝜑) =
Tr(𝑇)

deg(𝜑) , which concludes the proof. □

Let 𝜑 : 𝐺 −→𝑛 (ℂ) and 𝜌 : 𝐺 −→ GL𝑚(ℂ). The map Hom(𝑉,𝑊) −→ Hom𝐺 (𝜑, 𝜌)
from Lemma 3.10 is then a map from 𝑀𝑚𝑛(ℂ) to a subspace of 𝑀𝑚𝑛(ℂ), and it is natural
to try to compute its matrix with respect to the standard basis of 𝑀𝑚𝑛(ℂ). It turns out
this matrix has a special form is 𝜑 and 𝜌 are unitary.

To make this claim more precise, we need the following lemma about matrix multipli-
cation. Recall that the standard basis of 𝑀𝑚𝑛(ℂ) is 𝐸11, 𝐸12, . . . , 𝐸𝑚𝑛 where 𝐸𝑖 𝑗 has its
(𝑖, 𝑗)−th coefficient equal to 1, and the others equal to 0.

Lemma 3.12. Let 𝐴 ∈ 𝑀𝑟𝑚(ℂ), 𝐵 ∈ 𝑀𝑛𝑠(ℂ) and 𝐸𝑘𝑖 ∈ 𝑀𝑚𝑛(ℂ). Then (𝐴𝐸𝑘𝑖𝐵)𝑙 𝑗 = 𝑎𝑙𝑘𝑏𝑖 𝑗 .

Proof. Directly (𝐴𝐸𝑘𝑖𝐵)𝑙 𝑗 =
∑︁
𝑟,𝑠

𝑎𝑙𝑟 (𝐸𝑘𝑖)𝑟𝑠𝑏𝑠 𝑗 and the only non-zero term in this sum is

when 𝑟 = 𝑘 and 𝑠 = 𝑖, giving the announced formula. □

We can now proceed to prove the following.

Proposition 3.13. Let 𝜑 : 𝐺 −→ 𝑈𝑛(ℂ) and 𝜌 : 𝐺 −→ 𝑈𝑚(ℂ) be unitary representations of 𝐺.
Let 𝐴 = 𝐸𝑘𝑖 ∈ 𝑀𝑚𝑛(ℂ). Then (𝐴)𝑙 𝑗 = ⟨𝜑𝑖 𝑗, 𝜌𝑘𝑙⟩.

Proof. From the definition of 𝐴 and Lemma 3.12, we have

(𝐴)𝑙 𝑗 =
1
|𝐺 |

∑︁
𝑔∈𝐺

(𝜌𝑔−1𝐸𝑘𝑖𝜑𝑔)𝑙 𝑗 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑙𝑘(𝑔−1)𝜑𝑖 𝑗 (𝑔).

As 𝜌 is unitary, 𝜌(𝑔−1) = 𝜌(𝑔)−1 = 𝜌(𝑔)∗, so 𝜌𝑙𝑘(𝑔−1) = 𝜌𝑙𝑘(𝑔), and it follows that

(𝐴)𝑙 𝑗 =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜌𝑘𝑙 (𝑔)𝜑𝑖 𝑗 (𝑔) = ⟨𝜑𝑖 𝑗, 𝜌𝑘𝑙⟩

as was to be shown. □
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We have all we need to establish Schur’s orthogonality relations, namely Theorem 3.9.

Proof. Let then 𝜑 : 𝐺 −→ 𝑈𝑛(ℂ), 𝜌 : 𝐺 −→ 𝑈𝑚(ℂ) be inequivalent irreducible unitary
representations of 𝐺.

For (i), let 𝐴 = 𝐸𝑘𝑖 ∈ 𝑀𝑚𝑛(ℂ). Then, as 𝜑 and 𝜌 are inequivalent, Proposition 3.11
implies that 𝐴 = 0. Hence ⟨𝜑𝑖 𝑗, 𝜌𝑘𝑙⟩ = (𝐴)𝑙 𝑗 = 0, as claimed.

For (ii), suppose first that 𝑘 = 𝑖 and 𝑙 = 𝑗. Let 𝐴 = 𝐸𝑖𝑖. Then

⟨𝜑𝑖 𝑗,𝜑𝑖 𝑗⟩ = (𝐴) 𝑗 𝑗 =
(

Tr(𝐴)
deg(𝜑) Idℂ𝑛

)
𝑗 𝑗

=

(
1
𝑛

Idℂ𝑛

)
𝑗 𝑗

=
1
𝑛

using first Proposition 3.13 and then Proposition 3.11(ii). If now 𝑘 ≠ 𝑖 and 𝑙 = 𝑗 for
instance, let 𝐴 = 𝐸𝑘𝑖 and observe that

⟨𝜑𝑖 𝑗,𝜑𝑘𝑙⟩ = (𝐴) 𝑗 𝑗 =
(

Tr(𝐴)
deg(𝜑) Idℂ𝑛

)
𝑗 𝑗

= 0

since Tr(𝐴) = 0. The remaining cases are handled similarly, and the theorem is proved. □

Renormalizing, we deduce also the next corollary.

Corollary 3.14. Let 𝜑 : 𝐺 −→ 𝑈𝑛(ℂ) be an irreducible unitary representation of degree 𝑛. Then
the 𝑛2 functions {√

𝑛𝜑𝑖 𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛
}

form an orthonormal set in 𝐿(𝐺).
An important consequence of Theorem 3.9 is that there are only finitely many equiva-

lence classes of irreducible representations. Indeed, first recall that each equivalence class
contains a unitary representation. As the entries of inequivalent unitary representations
of 𝐺 form an orthogonal set in 𝐿(𝐺), they form in fact a linearly independent set of vec-
tors in 𝐿(𝐺). Thus there are at most dim(𝐿(𝐺)) = |𝐺 | equivalence classes of irreducible
representations.

Additionally, if 𝜑(1), . . . ,𝜑(𝑠) form a complete set of representatives of the equivalence
classes of irreducible representations of 𝐺 and 𝑑𝑖 = deg(𝜑(𝑖)), then the functions{√︁

𝑑𝑘𝜑
(𝑘)
𝑖 𝑗

: 1 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝑘

}
form an orthonormal set in 𝐿(𝐺), and thus

𝑠 ≤ 𝑑2
1 + 𝑑2

2 + · · · + 𝑑2
𝑠 ≤ |𝐺 |.

We shall see later on that the second inequality is in fact an equality, whereas the first
inequality is an equality if and only if 𝐺 is abelian.

4. Character theory and central functions

Definition 4.1. Let 𝐺 be a finite group and 𝜑 : 𝐺 −→ GL(𝑉) be a representation of 𝐺. Its
character, denoted 𝜒𝜑, is the function 𝜒𝜑 : 𝐺 −→ ℂ defined as

𝜒𝜑 (𝑔) ··= Tr(𝜑𝑔), 𝑔 ∈ 𝐺.

Moreover, if 𝜑 is irreducible then 𝜒𝜑 is called an irreducible character.
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Note that if 𝜑 is one-dimensional, then 𝜒𝜑 = 𝜑. We will therefore not make the
distinction between one dimensional representations and their characters.

The character of a representation encodes many informations about the representation,
the first one being its degree.

Proposition 4.2. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of 𝐺. Then 𝜒𝜑 (𝑒) = deg(𝜑).
Proof. 𝜒𝜑 (𝑒) = Tr(𝜑(𝑒)) = Tr(Id𝑉 ) = dim(𝑉) = deg(𝜑). □

Also, equivalent representations have same characters.

Proposition 4.3. Let 𝜑 : 𝐺 −→ GL(𝑉), 𝜌 : 𝐺 −→ GL(𝑊) be representations 𝐺. If 𝜑 ∼ 𝜌,
then 𝜒𝜑 = 𝜒𝜌 .

Proof. From the assumption, there is an isomorphism 𝑇 : 𝑉 −→ 𝑊 so that 𝑇𝜑𝑔 = 𝜌𝑔𝑇 for
any 𝑔 ∈ 𝐺. It follows that

𝜒𝜑 (𝑔) = Tr(𝜑𝑔) = Tr(𝑇−1𝜌𝑔𝑇) = Tr(𝑇−1𝑇𝜌𝑔) = Tr(𝜌𝑔) = 𝜒𝜌 (𝑔)
for any 𝑔 ∈ 𝐺. □

The same proof shows that characters are constant on conjugacy classes.

Proposition 4.4. Let 𝜑 : 𝐺 −→ GL(𝑉) be a representation of 𝐺. Then 𝜒𝜑 (ℎ𝑔ℎ−1) = 𝜒𝜑 (𝑔) for
all 𝑔, ℎ ∈ 𝐺.

Proof. Let 𝑔, ℎ ∈ 𝐺, and compute that

𝜒𝜑 (ℎ𝑔ℎ−1) = Tr(𝜑ℎ𝑔ℎ−1) = Tr(𝜑ℎ𝜑𝑔𝜑ℎ−1) = Tr(𝜑ℎ𝜑ℎ−1𝜑𝑔) = Tr(𝜑𝑔) = 𝜒𝜑 (𝑔)
using that, inside Tr, matrices commute. □

Functions on the group that are constant on conjugacy classes play a key role in repre-
sentation theory. They deserve their own name.

Definition 4.5. A function 𝑓 : 𝐺 −→ ℂ is called central if 𝑓 (ℎ𝑔ℎ−1) = 𝑓 (𝑔) for any 𝑔, ℎ ∈ 𝐺.
The space of central functions is denoted 𝑍(𝐿(𝐺)).

Equivalently, 𝑓 : 𝐺 −→ ℂ is central if 𝑓 (𝑔ℎ) = 𝑓 (ℎ𝑔) for any 𝑔, ℎ ∈ 𝐺.

Proposition 4.6. 𝑍(𝐿(𝐺)) is a subspace of 𝐿(𝐺).
Proof. Let 𝑓1, 𝑓2 ∈ 𝑍(𝐿(𝐺)) and 𝑐 ∈ ℂ. We have

( 𝑓1 + 𝑐𝑓2) (ℎ𝑔ℎ−1) = 𝑓1(ℎ𝑔ℎ−1) + 𝑐𝑓2(ℎ𝑔ℎ−1) = 𝑓1(𝑔) + 𝑐𝑓2(𝑔) = ( 𝑓1 + 𝑐𝑓2) (𝑔)
for any 𝑔, ℎ ∈ 𝐺, whence 𝑓1 + 𝑐𝑓2 ∈ 𝑍(𝐿(𝐺)). □

As 𝑍(𝐿(𝐺)) is a subspace, we can try to find its dimension. Let CL(𝐺) be the set of
conjugacy classes of 𝐺. For 𝐶 ∈ CL(𝐺), let

𝛿𝐶 : 𝐺 −→ ℂ

𝑔 ↦−→
{
1 if 𝑔 ∈ 𝐶

0 otherwise
.

Lemma 4.7. The set 𝐵 = {𝛿𝐶 : 𝐶 ∈ CL(𝐺)} is a basis of 𝑍(𝐿(𝐺)). In particular, one has
dim(𝑍(𝐿(𝐺)) = |CL(𝐺) |.
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Proof. First of all, if 𝐶 ∈ CL(𝐺), then 𝛿𝐶 ∈ 𝑍(𝐿(𝐺)). If 𝑓 ∈ 𝑍(𝐿(𝐺)) and 𝑓 (𝐶) denotes
the value of 𝑓 on the conjugacy class 𝐶, then

𝑓 =
∑︁

𝐶∈CL(𝐺)
𝑓 (𝐶)𝛿𝐶

whence 𝐵 generates 𝑍(𝐿(𝐺)).
Now, if 𝐶 ≠ 𝐶′ ∈ CL(𝐺), then

⟨𝛿𝐶, 𝛿𝐶′⟩ = 1
|𝐺 |

∑︁
𝑔∈𝐺

𝛿𝐶 (𝑔)𝛿𝐶′ (𝑔) = 0

since there is no 𝑔 ∈ 𝐺 lying into two distinct conjugacy classes. Thus 𝐵 is an orthogonal
set of vectors in 𝑍(𝐿(𝐺)), and in particular is a set of linearly independent vectors. □

Thanks to Schur’s orthogonality relations (Theorem 3.9), we can deduce a similar state-
ment on characters.

Theorem 4.8. Let 𝜑 : 𝐺 −→ GL𝑛(ℂ), 𝜌 : 𝐺 −→ GL𝑚(ℂ) be irreducible representations of 𝐺.

Then ⟨𝜒𝜑, 𝜒𝜌⟩ =
{
1 if 𝜑 ∼ 𝜌

0 if 𝜑 ≁ 𝜌
.

Proof. Since any representation is equivalent to a unitary one (Proposition 2.9) and since
equivalent representations have equal characters (Proposition 4.3), we may assume that 𝜑
and 𝜌 are unitary. Thus it follows that

⟨𝜒𝜑, 𝜒𝜌⟩ =
1
|𝐺 |

∑︁
𝑔∈𝐺

Tr(𝜑𝑔)Tr(𝜌𝑔) =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝑛∑︁
𝑖=1

𝜑𝑖𝑖(𝑔)
𝑚∑︁
𝑗=1

𝜌 𝑗 𝑗 (𝑔) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

⟨𝜑𝑖𝑖, 𝜌 𝑗 𝑗⟩.

If 𝜑 ≁ 𝜌, then ⟨𝜑𝑖𝑖, 𝜌 𝑗 𝑗⟩ = 0 by Theorem 3.9, whence ⟨𝜒𝜑, 𝜒𝜌⟩ = 0.
If 𝜑 ∼ 𝜌, then

⟨𝜒𝜑, 𝜒𝜌⟩ = ⟨𝜒𝜑, 𝜒𝜑⟩ =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

⟨𝜑𝑖𝑖,𝜑 𝑗 𝑗⟩.

From Theorem 3.9, ⟨𝜑𝑖𝑖,𝜑 𝑗 𝑗⟩ ≠ 0 if and only if 𝑗 = 𝑖, in which case we get

⟨𝜒𝜑, 𝜒𝜌⟩ =
𝑛∑︁
𝑖=1

1
𝑛
= 1

as claimed. This terminates our proof. □

Corollary 4.9. There are at most |CL(𝐺) | equivalence classes of irreducible representations of 𝐺.

Proof. From Theorem 4.8, inequivalent representations have distinct characters. As distinct
characters of irreducible representations form an orthonormal set of 𝑍(𝐿(𝐺)), they are
linearly independent, and thus their number cannot exceed dim(𝑍(𝐿(𝐺)) = |GL(𝐺) |. □

If 𝑉 is a vector space, 𝜑 a representation of 𝐺 on 𝑉 and 𝑚 ≥ 1, we write 𝑚𝑉 for the
direct sum of 𝑚 copies of 𝑉 , as well as 𝑚𝜑 for the direct sum of 𝑚 copies of 𝜑.

Let 𝜑(1), . . . ,𝜑(𝑠) be a complete set of representatives of irreducible representations of
𝐺. Denote 𝑑𝑖 ··= deg(𝜑(𝑖)).
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Definition 4.10. Let 𝜑 be a representation of 𝐺. If 𝜑 ∼ 𝑚1𝜑
(1) ⊕ · · · ⊕ 𝑚𝑠𝜑

(𝑠) , then we
call 𝑚𝑖 the multiplicity of 𝜑(𝑖) in 𝜑. If 𝑚𝑖 ≥ 1, we say 𝜑(𝑖) is an irreducible constituent of 𝜑.

Note that if 𝜑 ∼ 𝑚1𝜑
(1) ⊕ · · · ⊕ 𝑚𝑠𝜑

(𝑠) , then deg(𝜑) = 𝑚1𝑑1 + · · · + 𝑚𝑠𝑑𝑠.
At this point, it is not clear that the multiplicity is well-defined, since we did not prove

that the decomposition into irreducible ones is unique. We tackle the question by showing
directly that multiplicities can be computed from characters. Since characters depend only
on the equivalence class of the representation (cf. Proposition 4.3), the multiplicity of 𝜑(𝑖)

will be the same no matter how we decompose 𝜑.
We first record the following property of characters.

Lemma 4.11. Let 𝜑, 𝜌 be representations of 𝐺. Then 𝜒𝜑⊕𝜌 = 𝜒𝜑 + 𝜒𝜌 .

Proof. For any 𝑔 ∈ 𝐺, (𝜑 ⊕ 𝜌)𝑔 is the diagonal block matrix(
𝜑𝑔 0
0 𝜌𝑔

)
and since the trace is the sum of diagonal elements, the claim follows. □

We can thus use orthogonality of irreducible characters to extract the coefficients in the
decomposition of an arbitrary representation.

Theorem 4.12. Let 𝜑(1), . . . ,𝜑(𝑠) be a complete set of representatives of the equivalence classes
of irreducible representations of 𝐺. Let

𝜑 ∼ 𝑚1𝜑
(1) ⊕ · · · ⊕ 𝑚𝑠𝜑

(𝑠) .

Then 𝑚𝑖 = ⟨𝜒𝜑, 𝜒𝜑 (𝑖) ⟩. In particular, the decomposition of 𝜑 into irreducible constituents is
unique and 𝜑 is determined up to equivalence by its character.

Proof. From Lemma 4.11 we have
𝜒𝜑 = 𝑚1𝜒𝜑 (1) + · · · + 𝑚𝑠𝜒𝜑 (𝑠)

whence
⟨𝜒𝜑, 𝜒𝜑 (𝑖) ⟩ = ⟨𝑚1𝜒𝜑 (1) + · · · + 𝑚𝑠𝜒𝜑 (𝑠) , 𝜒𝜑 (𝑖) ⟩ = 𝑚𝑖

using Theorem 4.8. The second and third statements are consequences of Proposition
4.3. □

From this computation, we deduce a practical condition for checking a given represen-
tation is irreducible.

Corollary 4.13. A representation 𝜑 of a group 𝐺 is irreducible if and only if ⟨𝜒𝜑, 𝜒𝜑⟩ = 1.

Proof. If 𝜑 ∼ 𝑚1𝜑
(1) ⊕ · · · ⊕ 𝑚𝑠𝜑

(𝑠) , then

⟨𝜒𝜑, 𝜒𝜑⟩ =
𝑠∑︁

𝑖=1

𝑚𝑖⟨𝜒𝜑, 𝜒𝜑 (𝑖) ⟩ =
𝑠∑︁

𝑖=1

𝑚2
𝑖

Since 𝑚𝑖 is a natural integer for all 1 ≤ 𝑖 ≤ 𝑠, ⟨𝜒𝜑, 𝜒𝜑⟩ = 1 if and only if there is an index
𝑖 so that 𝑚𝑖 = 1, and 𝑚 𝑗 = 0 for 𝑗 ≠ 𝑖. This amounts to saying that 𝜑 ∼ 𝜑(𝑖) , which is
equivalent to 𝜑 being irreducible by Proposition 2.4. □
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Example 4.14. Consider the representation of 𝐺 = 𝑆3 given by

𝜑(12) =

(
−1 −1
0 1

)
, 𝜑(123) =

(
−1 −1
1 0

)
The values of 𝜒𝜑 are then 𝜒𝜑 (Id) = 2, 𝜒𝜑 ((12)) = 0, 𝜒𝜑 ((123)) = −1, and Id, (12), (123)
is a complete set of representatives of the conjugacy classes of 𝐺, whose cardinalities are
respectively 1, 3 and 2. Thus

⟨𝜒𝜑, 𝜒𝜑⟩ =
1
6
(1 · 22 + 3 · 02 + 2 · (−1)2) = 1

and 𝜑 is irreducible, as already showed in Example 1.16.

Example 4.15. Consider the standard representation 𝜑 of 𝐺 = 𝑆4 as in Example 1.5.
𝐺 has five conjugacy classes, with representatives (1), (12) (34), (12), (1234), (123), of
cardinalities 1, 3, 6, 6 and 8 respectively. Values of 𝜒𝜑 are then 𝜒𝜑 ((1)) = 4, 𝜒𝜑 ((12) (34)) =
0, 𝜒𝜑 ((12)) = 2, 𝜒𝜑 ((1234)) = 0, 𝜒𝜑 ((123)) = 1, whence

⟨𝜒𝜑, 𝜒𝜑⟩ =
1
24

(1 · 42 + 3 · 02 + 6 · 22 + 6 · 02 + 8 · 12) = 2

and 𝜑 is not irreducible. This agrees with the previous observation that 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4
generates an invariant subspace of ℂ4.

Example 4.16. We already know two irreducible representations of 𝑆3: the trivial one and
𝜑 of Example 4.14. Observe that also the signature 𝜀 : 𝑆3 −→ ℂ∗ is a group homomor-
phism, and therefore a one-dimensional representation of 𝑆3. Since its character is itself,
we directly compute

⟨𝜒𝜀, 𝜒𝜀⟩ =
1
6
(1 · 12 + 3 · (−1)2 + 2 · 12) = 1

and thus 𝜀 is irreducible as well. As the values of its character differ from the values of the
character of the trivial representation and the character of 𝜑, 𝜀 is not equivalent to any of
those representations. In fact, since 𝑆3 has three conjugacy classes, Corollary 4.9 ensures
it has at most three inequivalent irreducible representations, and since we found already
three inequivalent irreducible representations, it has exactly three inequivalent irreducible
representations.

Let us now decompose the standard representation 𝜌 of 𝑆3 (cf. Example 1.5) as a direct
sum of 1𝑆3, 𝜀 and 𝜑. Indeed, we know that

𝜌 ∼ 𝑚11𝑆3 ⊕ 𝑚2𝜀 ⊕ 𝑚3𝜑.

Moreover, the character of 𝜌 is given by 𝜒𝜌 ((1)) = 3, 𝜒𝜌 ((12)) = 1, 𝜒𝜌 ((123)) = 0. Using
Theorem 4.12, we compute

𝑚1 = ⟨𝜒𝜌, 𝜒1𝑆3
⟩ = 1

6
(1 · 3 · 1 + 3 · 1 · 1 + 2 · 0 · 1) = 1

𝑚2 = ⟨𝜒𝜌, 𝜒𝜀⟩ =
1
6
(1 · 3 · 1 + 3 · 1 · (−1) + 2 · 0 · 1) = 0

𝑚3 = ⟨𝜒𝜌, 𝜒𝜑⟩ =
1
6
(1 · 3 · 2 + 3 · 1 · 0 + 2 · 0 · (−1)) = 1
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and we conclude that 𝜌 ∼ 1𝑆3 ⊕ 𝜑.

Let ℂ𝐺 denote the vector space of all formal linear combinations of elements of 𝐺, that
is

ℂ𝐺 ··=
{ ∑︁

𝑔∈𝐺
𝑎𝑔𝑔 : 𝑎𝑔 ∈ ℂ

}
.

Addition and multiplication are defined using addition and multiplication in ℂ:( ∑︁
𝑔∈𝐺

𝑎𝑔𝑔

)
+

( ∑︁
𝑔∈𝐺

𝑏𝑔𝑔

)
··=

∑︁
𝑔∈𝐺

(𝑎𝑔 + 𝑏𝑔)𝑔, 𝜆
( ∑︁
𝑔∈𝐺

𝑎𝑔𝑔

)
··=

∑︁
𝑔∈𝐺

(𝜆𝑎𝑔)𝑔.

This vector space can be endowed with an inner product, given by〈 ∑︁
𝑔∈𝐺

𝑎𝑔𝑔,
∑︁
𝑔∈𝐺

𝑏𝑔𝑔

〉
··=

∑︁
𝑔∈𝐺

𝑎𝑔𝑏𝑔.

Definition 4.17. Let 𝐺 be a finite group. Its regular representation is the group homomor-
phism 𝐿 : 𝐺 −→ GL(ℂ𝐺) defined as

𝐿𝑔

( ∑︁
ℎ∈𝐺

𝑐ℎℎ

)
··=

∑︁
ℎ∈𝐺

𝑐ℎ(𝑔ℎ) =
∑︁
𝑥∈𝐺

𝑐𝑔−1𝑥𝑥.

We will see below that the left regular representation is never irreducible, but has the
feature of containing all irreducible representations of the group as subrepresentations.

To begin, we shall indeed prove it is a representation.

Lemma 4.18. 𝐿 : 𝐺 −→ GL(ℂ𝐺) is a unitary representation of 𝐺.

Proof. Linearity of 𝐿𝑔 for any 𝑔 ∈ 𝐺 is straightforward to establish. Also if 𝑔, ℎ ∈ 𝐺 then

𝐿𝑔

(
𝐿ℎ

( ∑︁
𝑥∈𝐺

𝑎𝑥𝑥

))
= 𝐿𝑔

( ∑︁
𝑥∈𝐺

𝑎𝑥 (ℎ𝑥)
)
=

∑︁
𝑥∈𝐺

𝑎𝑥 (𝑔ℎ𝑥) = 𝐿𝑔ℎ

( ∑︁
𝑥∈𝐺

𝑎𝑥𝑥

)
so 𝐿 : 𝐺 −→ GL(ℂ𝐺) is a group homomorphism. To prove 𝐿𝑔 is unitary for any 𝑔 ∈ 𝐺,
it is enough to prove it preserves the inner product on ℂ𝐺. We compute then〈

𝐿𝑔

( ∑︁
ℎ∈𝐺

𝑎ℎℎ

)
, 𝐿𝑔

( ∑︁
ℎ∈𝐺

𝑏ℎℎ

)〉
=

〈 ∑︁
ℎ∈𝐺

𝑎ℎ(𝑔ℎ),
∑︁
ℎ∈𝐺

𝑏ℎ(𝑔ℎ)
〉

=

〈 ∑︁
ℎ∈𝐺

𝑎𝑔−1ℎℎ,
∑︁
ℎ∈𝐺

𝑏𝑔−1ℎℎ

〉
=

∑︁
ℎ∈𝐺

𝑎𝑔−1ℎ𝑏𝑔−1ℎ

=
∑︁
𝑡∈𝐺

𝑎𝑡𝑏𝑡

=

〈 ∑︁
ℎ∈𝐺

𝑎ℎℎ,
∑︁
ℎ∈𝐺

𝑏ℎℎ

〉
and thus 𝐿𝑔 is unitary for all 𝑔 ∈ 𝐺. This concludes the proof. □
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The character of 𝐿 takes a very simple form.

Proposition 4.19. We have 𝜒𝐿(𝑔) = |𝐺 |𝛿𝑒(𝑔).
Proof. Let 𝐺 = {𝑔1, . . . , 𝑔𝑛} where 𝑛 = |𝐺 |. Let 𝑔 ∈ 𝐺. As 𝐺 is a basis of ℂ𝐺, we
can compute the matrix [𝐿𝑔] of 𝐿𝑔 : ℂ𝐺 −→ ℂ𝐺 with respect to that basis. Since
𝐿𝑔 (𝑔𝑖) = 𝑔𝑔𝑖, we have

( [𝐿𝑔])𝑖 𝑗 =
{
1 if 𝑔𝑖 = 𝑔𝑔 𝑗

0 otherwise
=

{
1 if 𝑔 = 𝑔𝑖𝑔

−1
𝑗

0 otherwise
.

In particular ( [𝐿𝑔])𝑖𝑖 = 1 if 𝑔 = 𝑒 and 0 otherwise, and it follows that

𝜒𝐿(𝑔) = Tr( [𝐿𝑔]) =
𝑛∑︁
𝑖=1

( [𝐿𝑔])𝑖𝑖 = |𝐺 |𝛿𝑒(𝑔)

as claimed. □

We can now establish the decomposition of 𝐿 into irreducible constituents.

Proposition 4.20. Let 𝜑(1), . . . ,𝜑(𝑠) be a complete set of inequivalent irreducible unitary repre-
sentations of 𝐺. For 1 ≤ 𝑖 ≤ 𝑠, denote 𝑑𝑖 = deg(𝜑(𝑖)). Then one has

𝐿 ∼ 𝑑1𝜑
(1) ⊕ · · · ⊕ 𝑑𝑠𝜑

(𝑠) .

Proof. Invoking Theorem 4.12, it suffices to compute ⟨𝜒𝐿, 𝜒𝜑 (𝑖) ⟩ to deduce the decomposi-
tion of 𝐿. But, thanks to Proposition 4.2 and Proposition 4.19, we have

⟨𝜒𝐿, 𝜒𝜑 (𝑖) ⟩ =
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜒𝐿(𝑔)𝜒𝜑 (𝑖) (𝑔) =
1
|𝐺 | |𝐺 |deg(𝜑(𝑖)) = 𝑑𝑖

for any 1 ≤ 𝑖 ≤ 𝑠, and the conclusion follows. □

We can then complete our previous results.

Proposition 4.21. With the above notation, |𝐺 | = 𝑑2
1 + · · · + 𝑑2

𝑠.

Proof. As 𝐿 ∼ 𝑑1𝜑
(1) ⊕ · · · ⊕ 𝑑𝑠𝜑

(𝑠) , it follows from Proposition 4.3 and Lemma 4.11 that

𝜒𝐿 = 𝑑1𝜒𝜑 (1) + · · · + 𝑑𝑠𝜒𝜑 (𝑠) .

Evaluating this equality at 𝑔 = 𝑒 and using that 𝜒𝜑 (𝑖) (𝑒) = 𝑑𝑖, 1 ≤ 𝑖 ≤ 𝑠, we get

|𝐺 | = 𝜒𝐿(𝑒) = 𝑑1𝜒𝜑 (1) (𝑒) + · · · + 𝑑𝑠𝜒𝜑 (𝑠) (𝑒) = 𝑑2
1 + · · · + 𝑑2

𝑠

as was to be shown. □

Corollary 4.22. With the above notations, the set

𝐵 =
{√︁

𝑑𝑘𝜑
(𝑘)
𝑖 𝑗

: 1 ≤ 𝑘 ≤ 𝑠, 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝑘

}
is an orthonormal basis of 𝐿(𝐺).
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Proof. We already know that 𝐵 form an orthonormal set of 𝐿(𝐺) (by the discussion
following Corollary 3.14), and as

|𝐵| = 𝑑2
1 + · · · + 𝑑2

𝑠 = |𝐺 | = dim(𝐿(𝐺))
we deduce that 𝐵 is a basis of 𝐿(𝐺). □

Here is another basis for the space 𝑍(𝐿(𝐺)) of central functions on the group 𝐺.

Theorem 4.23. Irreducible characters 𝜒1, . . . , 𝜒𝑠 form an orthonormal basis of 𝑍(𝐿(𝐺)).
Proof. From Theorem 4.8, we already know irreducible characters are pairwise orthogonal,
and in particular linearly independent. It remains to show they generate 𝑍(𝐿(𝐺)).

Let then 𝑓 ∈ 𝑍(𝐿(𝐺)). By Corollary 4.22, there exist 𝑐(𝑘)
𝑖 𝑗

so that

𝑓 =
∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

𝜑
(𝑘)
𝑖 𝑗

.

Let 𝑥 ∈ 𝐺. As 𝑓 is central, we then have

𝑓 (𝑥) = 1
|𝐺 |

∑︁
𝑔∈𝐺

𝑓 (𝑔𝑥𝑔−1)

=
1
|𝐺 |

∑︁
𝑔∈𝐺

∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

𝜑
(𝑘)
𝑖 𝑗

(𝑔𝑥𝑔−1)

=
∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

1
|𝐺 |

∑︁
𝑔∈𝐺

𝜑
(𝑘)
𝑖 𝑗

(𝑔𝑥𝑔−1)

=
∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

[
1
|𝐺 |

∑︁
𝑔∈𝐺

𝜑
(𝑘)
𝑔 𝜑

(𝑘)
𝑥 𝜑

(𝑘)
𝑔−1

]
𝑖 𝑗

=
∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

[
𝜑
(𝑘)
𝑥

]
𝑖 𝑗

=
∑︁
𝑖, 𝑗,𝑘

𝑐
(𝑘)
𝑖 𝑗

[
Tr(𝜑(𝑘)

𝑥 )
𝑑𝑘

Id
]
𝑖 𝑗

=
∑︁
𝑖,𝑘

𝑐
(𝑘)
𝑖𝑖

1
𝑑𝑘

𝜒𝑘(𝑥)

using Proposition 3.11 for the sixth equality. Hence 𝑓 =
∑︁
𝑖,𝑘

𝑐
(𝑘)
𝑖𝑖

𝜒𝑘, which shows that

irreducible characters span 𝑍(𝐿(𝐺)). The proof is complete. □

Since indicator functions of conjugacy classes also form a basis of 𝑍(𝐿(𝐺)), we deduce
the following.

Corollary 4.24. The number of equivalence classes of irreducible representations of 𝐺 equals the
number of conjugacy classes of 𝐺.
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As a particular case of this corollary, we deduce that a group 𝐺 is abelian if and only if
it has |𝐺 | irreducible representations, up to equivalence.

Example 4.25. Let 𝐺 = ℤ/𝑛ℤ, and 𝜔 = 𝑒
2𝜋𝑖
𝑛 . Let 𝜒𝑘 : 𝐺 −→ ℂ∗, [𝑚] ↦−→ 𝜔𝑘𝑚. Then

𝜒0, . . . , 𝜒𝑛−1 are the irreducible representations of 𝐺. Their values on conjugacy classes
are usually gathered in a table, called the character table of 𝐺. For instance, the character
table of ℤ/4ℤ looks like

[0] [1] [2] [3]
𝜒0 1 1 1 1
𝜒1 1 −1 1 −1
𝜒2 1 𝑖 −1 −𝑖
𝜒3 1 −𝑖 −1 𝑖

Example 4.26. From Example 4.16, we see that the character table of 𝐺 = 𝑆3 is

Id (12) (123)
𝜒0 1 1 1
𝜒𝜀 1 −1 1
𝜒𝜑 2 0 −1

with 𝜀 : 𝑆3 −→ ℂ∗ the signature and 𝜑 the irreducible 2−dimensional representation
from Example 4.14.

In these two tables, we note that the inner product of two distinct columns is always 0.
This is in fact always the case.
Theorem 4.27. Let 𝐶,𝐶′ be conjugacy classes of 𝐺 and 𝑔 ∈ 𝐶, ℎ ∈ 𝐶′. Then

𝑠∑︁
𝑖=1

𝜒𝑖(𝑔)𝜒𝑖(ℎ) =
{
|𝐺 |
|𝐶 | if 𝐶 = 𝐶′

0 otherwise
.

In particular, columns of the character table are pairwise orthogonal.

Proof. Writing 𝛿𝐶′ =

𝑠∑︁
𝑖=1

⟨𝛿𝐶′ , 𝜒𝑖⟩𝜒𝑖, we compute

𝛿𝐶′ (𝑔) =
𝑠∑︁

𝑖=1

⟨𝛿𝐶′ , 𝜒𝑖⟩𝜒𝑖(𝑔)

=

𝑠∑︁
𝑖=1

1
|𝐺 |

( ∑︁
𝑥∈𝐺

𝛿𝐶′ (𝑥)𝜒𝑖(𝑥)
)
𝜒𝑖(𝑔)

=

𝑠∑︁
𝑖=1

1
|𝐺 |

( ∑︁
𝑥∈𝐶′

𝜒𝑖(𝑥)
)
𝜒𝑖(𝑔)

=
|𝐶′|
|𝐺 |

𝑠∑︁
𝑖=1

𝜒𝑖(ℎ)𝜒𝑖(𝑔)

and the claim follows. □
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5. Representations of finite abelian groups

As shown in Example 4.25, we know all irreducible representations of ℤ/𝑛ℤ. As any
finite abelian group is a direct product of these, we only need to describe how to get
irreducible representations of direct products of groups from irreducible representations
of each factor. This is done by the next result.

Proposition 5.1. Let 𝐺, 𝐻 be abelian groups, and let 𝜒1, . . . , 𝜒𝑛, 𝜑1, . . . ,𝜑𝑚 be their irrducible
representations (in particular 𝑛 = |𝐺 | and 𝑚 = |𝐻 |). For 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, define
𝛼𝑖 𝑗 : 𝐺 × 𝐻 −→ ℂ∗ by

𝛼𝑖 𝑗 (𝑔, ℎ) = 𝜒𝑖(𝑔)𝜑 𝑗 (ℎ), (𝑔, ℎ) ∈ 𝐺 × 𝐻.

Then {𝛼𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} form a complete set of irreducible representations of 𝐺 × 𝐻.

Proof. Let 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. For all (𝑔, ℎ), (𝑔′, ℎ′) ∈ 𝐺 × 𝐻, we have
𝛼𝑖 𝑗 ((𝑔, ℎ) (𝑔′, ℎ′)) = 𝛼𝑖 𝑗 (𝑔𝑔′, ℎℎ′)

= 𝜒𝑖(𝑔𝑔′)𝜑𝑖(ℎℎ′)
= 𝜒𝑖(𝑔)𝜑𝑖(ℎ)𝜒𝑖(𝑔′)𝜑𝑖′ (ℎ′)
= 𝛼𝑖 𝑗 (𝑔, ℎ)𝛼𝑖 𝑗 (𝑔′, ℎ′)

so𝛼𝑖 𝑗 : 𝐺 ×𝐻 −→ ℂ∗ is a group homomorphism, namely a 1-dimensional representation
of 𝐺 × 𝐻. It follows in particular that 𝛼𝑖 𝑗 is irreducible. We now show that the set
mentioned in the statement has no repetitions, i.e. that 𝛼𝑖 𝑗 = 𝛼𝑘𝑙 implies 𝑖 = 𝑗 and 𝑘 = 𝑙.
If 𝛼𝑖 𝑗 = 𝛼(𝑘𝑙), then

𝜒𝑖(𝑔) = 𝜒𝑖(𝑔)𝜑 𝑗 (𝑒𝐻) = 𝛼𝑖 𝑗 (𝑔, 𝑒𝐻) = 𝛼𝑘𝑙 (𝑔, 𝑒𝐻) = 𝜒𝑘(𝑔)
for any 𝑔 ∈ 𝐺, whence 𝑖 = 𝑘. Likewise, 𝑗 = 𝑙. Lastly, since

|𝐺 × 𝐻 | = 𝑛𝑚 = |{𝛼𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}|
we conclude that any irreducible representation of 𝐺 × 𝐻 is of the form 𝛼𝑖 𝑗 for some
1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. □

Example 5.2. The character table of ℤ/2ℤ × ℤ/2ℤ is given by

([0],[0]) ([1],[0]) ([0],[1]) ([1],[1])
𝛼11 1 1 1 1
𝛼12 1 1 −1 −1
𝛼21 1 −1 1 −1
𝛼22 1 −1 −1 1
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